Compute elevations on the vertical curve as specified and include in your table a column showing the slope of a line tangent to the curve at that station. Also provide a basic sketch of the curves showing G1, G2, L, Station and Elevation of PVC, PVI, and PVT. If the curve length must be computed based on a given rate of change, please show how you calculated the length.

1. Given an entering grade of $+3.00 \%$ intersecting a -2.40% grade at station $46+70$ and elevation 853.48. Compute this vertical curve at full stations if the rate of change in grade per station is to be -0.90%.
2. On a railroad a $+0.8 \%$ grade meets a -0.4% grade at station $90+00$ and at elevation 100.00. The maximum allowable change in grade per station is -0.2%. Find the elevations on the curve at every full station.
3. Calculate the elevation at each half station of a parabolic curve where the grade from the PVC (station $1+50$ and elevation 434.10) to the PVI is -6.50%. The grade from the PVI to the PVT is $+4.00 \%$ and the maximum allowable change in grade per station is $+2.625 \%$.
